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Abstract— Modern smartphones, servers, routers and other 

products have complex components, which interact with each 

other using different protocols. More than a billion such 

products are sold each year- so it is a herculean task for the 

different companies involved in the development and sales of 

such products to ensure that the products work flawlessly 

without any anomalies. Therefore, any new model of such 

products must undergo exhaustive testing globally before it can 

be launched. These wide range of tests generate a huge amount 

of logs. 

Analyzing these logs manually is a mammoth task. It takes 

a lot of man-hours across different test sites. This affects the 

turn-around time required to identify and fix issues. To solve 

these problems, Automatic Log Analysis needs to be 

implemented to reduce the burden of analyzing the logs 

manually, identifying issue logs efficiently, and assigning the 

issues to right developers, so that developers can focus on 

fixing the issues rather than having to go through thousands of 

logs, which may or not have any relevant issue scenarios. 

With the recent advancement of supervised machine 

learning methods, training the computer to perform offline and 

online log analysis is possible within this industry. 

Keywords— Log analytics, Machine Learning, Decision 

Trees, communication systems  

I. INTRODUCTION  

A bug-free product is essential for the success of any 

company. Due to various business factors- a product has to 

be launched in the quickest possible time with the latest 

technologies adding incremental and sometimes radical 

changes to existing products or make new modules within 

products- and these changes invariantly cause bugs. 

Extensive testing is a critical part of understanding system 

status and performance issues. During testing, system logs 

are collected to record system states and significant events 

at various critical points to facilitate debugging of failures 

and perform root cause analysis. The following steps are 

generally performed after log collection is completed: 

1. A ticket is raised with the detailed description of 

the problem and relevant logs. 

2. The ticket is assigned to a First-Level-Analysis 

engineer- who is usually not located at the test site. 

3. The logs are then downloaded by the engineer and 

the issue is analyzed by searching for some specific 

Keywords / Traces for the failures that can happen.  

4. Based on the above analysis, the issue can be 

declared as normal or abnormal behaviour. Based 

on the module in which this issue might be 

occurring, the issue can be re-assigned. Step 3 will 

be performed again. This process is repeated till the 

relevant engineer, who is the owner of Module 

where the issue happened, is finally assigned the 

issue. 

5. The issue is fixed by the module engineer and 

further testing is done and more logs are analyzed 

till the issue is found to be fully fixed. 

Performing the above steps for a large scale system is 

time-consuming and requires expert knowledge. Many 

unknown problems occur in an ever-growing and 

continuously updated system. Very few engineers want to 

spend their valuable time analyzing logs. Even the engineer 

who finally fixes the issue has to repeatedly analyze the logs 

for several days till the issue is finally declared to be fixed 

as per the process. Also manual log analysis is error-prone 

and non-scalable. It also causes stress to the engineers as 

repeated work eventually becomes boring and this leads to 

loss of passion for the assigned work. The inefficiency and 

difficulties of manual log analysis make automated log 

analysis desirable. 

 

In this paper, we propose to apply machine learning 

techniques to do automated log analysis as they are effective 

and efficient to big data problems. Features from the 

contents of the logs are extracted and learning algorithms 

are leveraged to detect abnormalities. 

 

The Automatic Log Analysis Tool proposed in this paper 

does the following: 

1. Whenever a new issue is raised or existing issue is 

updated, a new entry in Action List will be created 

by the tool. 

2. Relevant logs and required binaries are 

automatically downloaded to decode the logs. 

3. The logs are cleaned and relevant features are 

extracted. This dataset is then fed into our learning 

model for analysis (this step will be explained in 

next section) 

4. The issue is updated with the analysis. The issue is 

also classified as Expected or Unexpected 

behavior. The analysis is emailed to relevant 

engineer (users). 
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 Based on the feedback from the engineers and further 
discussions which are updated on the Issue ticket- the scripts 
are enhanced to refine the learning model. This is illustrated 
in Fig. 1a. 

II. IMPLEMENTATION 

A. Pruning Log by Chosen Events 

 The unstructured log entries are parsed into structured 
representation, so that the model can be trained over this 
structured data (as seen in fig. 1b). Usually a log contains 
millions of traces, but some traces indicate critical events 
like : 

i. Assert Events,  for example,  “memory allocation 

failure”  

ii. Failure Events- for example,  “call drop notification 

to user with cause xyz”  

iii. Success Events- for example,   “Normal Call 

Release notification to user with cause PQR”   

These events are added in logs explicitly by developers to 
identify a particular kind of failure or success case. The 
“Scripts” in the Figure 1a contain a “Trace List” of such 
chosen traces only & their usual and unusual patterns.  

These events are added initially as part of Supervised 
Machine Learning process by running the tool on Training 
Logs. Training logs can be all Conformance  Test (like 
PCT/GCF/RCT/RRM) success logs, Pass logs from issue 
tickets in Issue tracking system, and other logs that the 
developer feeds to the system. Later during unsupervised 

mimicking phase, the tool can add more such events in the  
“Trace List” by polling the different issue tickets in the Issue 
tracking system. Logs can be plain text or proprietary logs 
which are encoded in a specific way. To decode proprietary 
logs, special binaries and keys maybe needed. For example,  
“Device IPv4 address is 1.2.3.4 ”is a trace & it is usually 
present in code as: 

 The constant trace part “Device IPv4 address is %d. %d. 
%d. %d”  

 The variable part with the four “%d” integer values. 

The logs can be pruned by choosing only constant traces 
from logs, which are present in the “Trace List” of Decision 
Tree based Scripts. This can be seen in fig. 2. This 
significantly reduces the number of traces and events in final 
log. Thus, parsing the log becomes much faster. 

B.  Setting Operating Windows in the Log 

Once the log is parsed and pruned to contain only critical 
events, different Operating Windows are formed based on 
the critical events in the issue logs. For example, for a Voice 
Call Drop issue, any event that occurs after the call drop is 
not important from the analysis perspective. The call drop 
event is the “End of Operating Window”. Similarly, the start 
of the call can be considered as the “Start of Operating 
Window”.  

By setting a smaller and relevant “Operating Window”, 
the amount of computation required decreases significantly. 
Events like bad signaling conditions, Network Operator 
messages like “User busy”, etc. are analyzed only during the 
failure period. If there are multiple Call Drops in the log,  

 

Fig. 1a: Usage of Automatic Analysis Tool in the Ecosystem 

 

 

Fig. 1b: Blocks in Automatic Analysis Tool 
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 then after analyzing current call drop, the operating 
window is changed to point of the next call drop in the log. 

In Figure 3 example, in “Operating Window 1”, Event 
“Network sent User Busy” will be found and other Failure 
events are not found as they are not part of current 
“Operating Window”. 

C. Decision Tree based Analysis 

 Decision Trees are created during Supervised Machine 

Learning process using traces from training logs from 

Conformance Testing (like PCT/GCF/RCT/RRM) and logs 

uploaded as issue tickets in Issue tracking system that have 

already been analysed by the engineers. The issue tickets 

usually contain a template with logs and detailed analysis 

from engineers with log snippets. The tree is created using 

Python based on the root cause analysis made for the issue 

observed. The training set is classified into Normal and 

Abnormal behavior based on the resolution of the issues.  

The components in the decision tree framework are made 

reusable and modular so it can be interchanged between the 

other decision tree algorithms. 

During execution within the “Operating Window” the 

“root node” will check if any of the events mentioned in the 

“child node” has happened. If the child node has more child 

events to check, then more scripts can be called like 

subroutines or a function using the same “Operating 

Window” or a reduced “Operating Window”. This process is 

repeated till a classification can be made into:  

i. Normal: This issue requires no further debugging. It 

can be a temporary network / environment issue and it is 

not a device issue. Such issues will be resolved by the tool 

automatically. 

ii. Abnormal/Anomaly: This could be a device issue. 

Based on the events seen in the operating window, the 

issue is assigned to relevant developer / leader alongwith 

the analysis. 

iii. New Pattern: None of the nodes could capture the 

reason for failure present in the root node / child node. 

This is a new scenario that has not been captured in the 

existing script. The tool will assign the issue to a “First 

Level Analysis” engineer, add it to the Action List and poll 

the issue in the issue ticket platform. Once the issue is 

resolved / updated, the new pattern explained by the engineer 

in the comment section of this issue will be used to train the 

existing learning model so that such issues can be detected 

by the tool in the future and be assigned or resolved 

accordingly. 

 
A basic sample flow is shown in Figure 4. Overtime- 

each node may have more than 20 branches. And each node 
maybe called by different scripts. For example: “Downlink 
Layer 3” script maybe called by “Call End” script and also 
“SMS end” and “Internet End” scripts- so this allows re-use 
of scripts in different scenarios and reducing the depth of the 
Decision Trees. 

Apart from detecting different Events- the scripts can 
also extract values from the events. For example:  

Trace: “Device IPv4 address is 1.2.3.4” is at timestamp T1 

Trace: “Device IPv4 address is 11.22.33.44” is at timestamp 

T2 

 
  The script can then extract both these values from 
different timestamps and perform mathematical operations. 
Then as per the Decision Trees in script, the tool will apply 
learnt scenario vectors, compare with new input vectors, and 
generate similar outputs of “Normal/Abnormal/New Pattern” 
as discussed above. For example, Signal Strength and Signal 
Quality vectors of Serving Cell in the Modem are going 
down- then from Training Logs, the tool learns that Neighbor 
Cell measurement events must be triggered in 2G, 3G, 4G, 
5G, CDMA, Wi-Fi etc. and then upon further degradation a 
reselection or a Handover to be performed to better neighbor 
cells. During log analysis mode, if the tool detects 
deteriorating signal strength and quality- it will expect these 
events. And if such events don’t happen- then it is declared 
as Abnormal and further investigation from engineer is 
requested. 

III. EVALUATION 

The tool was run on all the issues found in a certain issue 

logging system for over three months.  Table 1 summarizes 

the average weekly statistics. 
TABLE. 1.     ISSUE ANALYSIS RESULTS 

Time 

Span 

Raw 

Logs 

Pruned 

Logs 

Total 

issues 

Total 

Issues 

Auto 

Analyzed 

Time 

taken to 

auto 

analyze 

7 

days 

18,000 

Gb 

360 Gb 200 180 ~40 

hours 

 

Fig. 2: Pruning Log by the trace List formed during training phase 

 

 

Fig. 3: Operating Windows  with different failures 
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It took about 40 hours to auto analyze the logs from 7 days 

without a single engineer intervention (either Resolved as 

“No Issue” or “Assigned to right engineers”). To do the 

same job manually, about 800 man-hours are needed. The 

burden of 20 engineers is also reduced by avoiding the 

repeated job of analyzing the logs. 2% false positives were 

reported; when an engineer was assigned an issue which 

was actually normal behavior. This was due to the 

inadequate priority setting during the decision tree 

formation. The other 8% couldn’t be analyzed due to failure 

to get necessary logs / binaries, as it was missing in the issue 

ticket. Few of the failures were due to “New Pattern” 

scenarios for tool. Such “New Pattern Scenarios” were 

added to “Pending Action List” to add them into the training 

set. The correctness of the model was evaluated by running 

it on a large of set of issue tickets during regression. This 

automated the process of enhancing and adding new patterns 

into the training database. It was also found that certain 

tweaks in the algorithm led to better results. For events like 

Call Fails, the Operating Window where the “Start of 

Operating Window” & “End of Operating Window” were set 

using Events like “Start of Call” and “End of Call”, the 

analysis accuracy was higher and execution time was better 

than other methods of setting the Operating Window. For 

events like Slow Internet, a sliding Operating Window was 

more efficient than event-based Operating Window. The 

Operating Window was made flexible by choosing it based 

on certain events, states, timer or sliding, based on the event 

being analyzed. 

IV. CONCLUSION 

This paper presents an approach for automated log 

analysis using decision trees. Compared to other available 

Automatic Log analysis tools, a new contribution is made by 

extracting the analysis provided by the module engineer 

from the Tickets on the Issue tracking platform 

incorporating in the training set for the learning model based 

on Decision Trees to adapt to missed scenarios. From the 

existing literature, it was concluded that unsupervised 

learning is slow and less accurate than supervised learning 

[1]. The main advantage of unsupervised learning is that it 

works for untrained scenarios as well. To overcome this, 

feedback from Issue ticket logs along with the analysis was 

incorporated in the training set. 

 Using this proposed method, the time taken to perform 

“First Level Analysis” can be reduced by 95% as compared 

to that taken in manual log analysis. This hastens the process 

of assigning the issues to the appropriate engineers. The 

Turn-Around time of fixing issues is greatly improved, 

which makes the “Go-To-Market” process faster. This also 

reduces the stress levels amongst engineers performing the 

“First Level Analysis” of the issue logs. The engineers can 

focus their time and energy on critical issues and other 

developmental activities. The Automatic analysis tool has 

been built by using concepts of Log pruning, Operating 

Windows and the Supervised Learning model which 

incorporates feedback from Issue Tickets is able to generate 

reliable and fast first level analysis of issues. It is certainly 

worth exploring and implementing Automatic Log Analysis 

for every major product. 
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Fig. 4: Decision tree example 
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