
Presented at WinTechCon-2018, organized by IEEE CAS Bangalore Chapter, IEEE Bangalore Section, and IEEE WiE Council

Automated Log Analysis in Communication

Systems
Divjot Kaur, Roshni Chatterjee, Rajdeep Kaur and Surendra Singh

Samsung Semiconductor India R&D

Samsung Electronics

Bangalore, India

Abstract— Modern smartphones, servers, routers and other

products have complex components, which interact with each

other using different protocols. More than a billion such

products are sold each year- so it is a herculean task for the

different companies involved in the development and sales of

such products to ensure that the products work flawlessly

without any anomalies. Therefore, any new model of such

products must undergo exhaustive testing globally before it can

be launched. These wide range of tests generate a huge amount

of logs.

Analyzing these logs manually is a mammoth task. It takes

a lot of man-hours across different test sites. This affects the

turn-around time required to identify and fix issues. To solve

these problems, Automatic Log Analysis needs to be

implemented to reduce the burden of analyzing the logs

manually, identifying issue logs efficiently, and assigning the

issues to right developers, so that developers can focus on

fixing the issues rather than having to go through thousands of

logs, which may or not have any relevant issue scenarios.

With the recent advancement of supervised machine

learning methods, training the computer to perform offline and

online log analysis is possible within this industry.

Keywords— Log analytics, Machine Learning, Decision

Trees, communication systems

I. INTRODUCTION

A bug-free product is essential for the success of any

company. Due to various business factors- a product has to

be launched in the quickest possible time with the latest

technologies adding incremental and sometimes radical

changes to existing products or make new modules within

products- and these changes invariantly cause bugs.

Extensive testing is a critical part of understanding system

status and performance issues. During testing, system logs

are collected to record system states and significant events

at various critical points to facilitate debugging of failures

and perform root cause analysis. The following steps are

generally performed after log collection is completed:

1. A ticket is raised with the detailed description of

the problem and relevant logs.

2. The ticket is assigned to a First-Level-Analysis

engineer- who is usually not located at the test site.

3. The logs are then downloaded by the engineer and

the issue is analyzed by searching for some specific

Keywords / Traces for the failures that can happen.

4. Based on the above analysis, the issue can be

declared as normal or abnormal behaviour. Based

on the module in which this issue might be

occurring, the issue can be re-assigned. Step 3 will

be performed again. This process is repeated till the

relevant engineer, who is the owner of Module

where the issue happened, is finally assigned the

issue.

5. The issue is fixed by the module engineer and

further testing is done and more logs are analyzed

till the issue is found to be fully fixed.

Performing the above steps for a large scale system is

time-consuming and requires expert knowledge. Many

unknown problems occur in an ever-growing and

continuously updated system. Very few engineers want to

spend their valuable time analyzing logs. Even the engineer

who finally fixes the issue has to repeatedly analyze the logs

for several days till the issue is finally declared to be fixed

as per the process. Also manual log analysis is error-prone

and non-scalable. It also causes stress to the engineers as

repeated work eventually becomes boring and this leads to

loss of passion for the assigned work. The inefficiency and

difficulties of manual log analysis make automated log

analysis desirable.

In this paper, we propose to apply machine learning

techniques to do automated log analysis as they are effective

and efficient to big data problems. Features from the

contents of the logs are extracted and learning algorithms

are leveraged to detect abnormalities.

The Automatic Log Analysis Tool proposed in this paper

does the following:

1. Whenever a new issue is raised or existing issue is

updated, a new entry in Action List will be created

by the tool.

2. Relevant logs and required binaries are

automatically downloaded to decode the logs.

3. The logs are cleaned and relevant features are

extracted. This dataset is then fed into our learning

model for analysis (this step will be explained in

next section)

4. The issue is updated with the analysis. The issue is

also classified as Expected or Unexpected

behavior. The analysis is emailed to relevant

engineer (users).

Presented at WinTechCon-2018, organized by IEEE CAS Bangalore Chapter, IEEE Bangalore Section, and IEEE WiE Council

 Based on the feedback from the engineers and further
discussions which are updated on the Issue ticket- the scripts
are enhanced to refine the learning model. This is illustrated
in Fig. 1a.

II. IMPLEMENTATION

A. Pruning Log by Chosen Events

 The unstructured log entries are parsed into structured
representation, so that the model can be trained over this
structured data (as seen in fig. 1b). Usually a log contains
millions of traces, but some traces indicate critical events
like :

i. Assert Events, for example, “memory allocation

failure”

ii. Failure Events- for example, “call drop notification

to user with cause xyz”

iii. Success Events- for example, “Normal Call

Release notification to user with cause PQR”

These events are added in logs explicitly by developers to
identify a particular kind of failure or success case. The
“Scripts” in the Figure 1a contain a “Trace List” of such
chosen traces only & their usual and unusual patterns.

These events are added initially as part of Supervised
Machine Learning process by running the tool on Training
Logs. Training logs can be all Conformance Test (like
PCT/GCF/RCT/RRM) success logs, Pass logs from issue
tickets in Issue tracking system, and other logs that the
developer feeds to the system. Later during unsupervised

mimicking phase, the tool can add more such events in the
“Trace List” by polling the different issue tickets in the Issue
tracking system. Logs can be plain text or proprietary logs
which are encoded in a specific way. To decode proprietary
logs, special binaries and keys maybe needed. For example,
“Device IPv4 address is 1.2.3.4 ”is a trace & it is usually
present in code as:

 The constant trace part “Device IPv4 address is %d. %d.
%d. %d”

 The variable part with the four “%d” integer values.

The logs can be pruned by choosing only constant traces
from logs, which are present in the “Trace List” of Decision
Tree based Scripts. This can be seen in fig. 2. This
significantly reduces the number of traces and events in final
log. Thus, parsing the log becomes much faster.

B. Setting Operating Windows in the Log

Once the log is parsed and pruned to contain only critical
events, different Operating Windows are formed based on
the critical events in the issue logs. For example, for a Voice
Call Drop issue, any event that occurs after the call drop is
not important from the analysis perspective. The call drop
event is the “End of Operating Window”. Similarly, the start
of the call can be considered as the “Start of Operating
Window”.

By setting a smaller and relevant “Operating Window”,
the amount of computation required decreases significantly.
Events like bad signaling conditions, Network Operator
messages like “User busy”, etc. are analyzed only during the
failure period. If there are multiple Call Drops in the log,

Fig. 1a: Usage of Automatic Analysis Tool in the Ecosystem

Fig. 1b: Blocks in Automatic Analysis Tool

Presented at WinTechCon-2018, organized by IEEE CAS Bangalore Chapter, IEEE Bangalore Section, and IEEE WiE Council

 then after analyzing current call drop, the operating
window is changed to point of the next call drop in the log.

In Figure 3 example, in “Operating Window 1”, Event
“Network sent User Busy” will be found and other Failure
events are not found as they are not part of current
“Operating Window”.

C. Decision Tree based Analysis

 Decision Trees are created during Supervised Machine

Learning process using traces from training logs from

Conformance Testing (like PCT/GCF/RCT/RRM) and logs

uploaded as issue tickets in Issue tracking system that have

already been analysed by the engineers. The issue tickets

usually contain a template with logs and detailed analysis

from engineers with log snippets. The tree is created using

Python based on the root cause analysis made for the issue

observed. The training set is classified into Normal and

Abnormal behavior based on the resolution of the issues.

The components in the decision tree framework are made

reusable and modular so it can be interchanged between the

other decision tree algorithms.

During execution within the “Operating Window” the

“root node” will check if any of the events mentioned in the

“child node” has happened. If the child node has more child

events to check, then more scripts can be called like

subroutines or a function using the same “Operating

Window” or a reduced “Operating Window”. This process is

repeated till a classification can be made into:

i. Normal: This issue requires no further debugging. It

can be a temporary network / environment issue and it is

not a device issue. Such issues will be resolved by the tool

automatically.

ii. Abnormal/Anomaly: This could be a device issue.

Based on the events seen in the operating window, the

issue is assigned to relevant developer / leader alongwith

the analysis.

iii. New Pattern: None of the nodes could capture the

reason for failure present in the root node / child node.

This is a new scenario that has not been captured in the

existing script. The tool will assign the issue to a “First

Level Analysis” engineer, add it to the Action List and poll

the issue in the issue ticket platform. Once the issue is

resolved / updated, the new pattern explained by the engineer

in the comment section of this issue will be used to train the

existing learning model so that such issues can be detected

by the tool in the future and be assigned or resolved

accordingly.

A basic sample flow is shown in Figure 4. Overtime-

each node may have more than 20 branches. And each node
maybe called by different scripts. For example: “Downlink
Layer 3” script maybe called by “Call End” script and also
“SMS end” and “Internet End” scripts- so this allows re-use
of scripts in different scenarios and reducing the depth of the
Decision Trees.

Apart from detecting different Events- the scripts can
also extract values from the events. For example:

Trace: “Device IPv4 address is 1.2.3.4” is at timestamp T1

Trace: “Device IPv4 address is 11.22.33.44” is at timestamp

T2

 The script can then extract both these values from
different timestamps and perform mathematical operations.
Then as per the Decision Trees in script, the tool will apply
learnt scenario vectors, compare with new input vectors, and
generate similar outputs of “Normal/Abnormal/New Pattern”
as discussed above. For example, Signal Strength and Signal
Quality vectors of Serving Cell in the Modem are going
down- then from Training Logs, the tool learns that Neighbor
Cell measurement events must be triggered in 2G, 3G, 4G,
5G, CDMA, Wi-Fi etc. and then upon further degradation a
reselection or a Handover to be performed to better neighbor
cells. During log analysis mode, if the tool detects
deteriorating signal strength and quality- it will expect these
events. And if such events don’t happen- then it is declared
as Abnormal and further investigation from engineer is
requested.

III. EVALUATION

The tool was run on all the issues found in a certain issue

logging system for over three months. Table 1 summarizes

the average weekly statistics.
TABLE. 1. ISSUE ANALYSIS RESULTS

Time

Span

Raw

Logs

Pruned

Logs

Total

issues

Total

Issues

Auto

Analyzed

Time

taken to

auto

analyze

7

days

18,000

Gb

360 Gb 200 180 ~40

hours

Fig. 2: Pruning Log by the trace List formed during training phase

Fig. 3: Operating Windows with different failures

Presented at WinTechCon-2018, organized by IEEE CAS Bangalore Chapter, IEEE Bangalore Section, and IEEE WiE Council

It took about 40 hours to auto analyze the logs from 7 days

without a single engineer intervention (either Resolved as

“No Issue” or “Assigned to right engineers”). To do the

same job manually, about 800 man-hours are needed. The

burden of 20 engineers is also reduced by avoiding the

repeated job of analyzing the logs. 2% false positives were

reported; when an engineer was assigned an issue which

was actually normal behavior. This was due to the

inadequate priority setting during the decision tree

formation. The other 8% couldn’t be analyzed due to failure

to get necessary logs / binaries, as it was missing in the issue

ticket. Few of the failures were due to “New Pattern”

scenarios for tool. Such “New Pattern Scenarios” were

added to “Pending Action List” to add them into the training

set. The correctness of the model was evaluated by running

it on a large of set of issue tickets during regression. This

automated the process of enhancing and adding new patterns

into the training database. It was also found that certain

tweaks in the algorithm led to better results. For events like

Call Fails, the Operating Window where the “Start of

Operating Window” & “End of Operating Window” were set

using Events like “Start of Call” and “End of Call”, the

analysis accuracy was higher and execution time was better

than other methods of setting the Operating Window. For

events like Slow Internet, a sliding Operating Window was

more efficient than event-based Operating Window. The

Operating Window was made flexible by choosing it based

on certain events, states, timer or sliding, based on the event

being analyzed.

IV. CONCLUSION

This paper presents an approach for automated log

analysis using decision trees. Compared to other available

Automatic Log analysis tools, a new contribution is made by

extracting the analysis provided by the module engineer

from the Tickets on the Issue tracking platform

incorporating in the training set for the learning model based

on Decision Trees to adapt to missed scenarios. From the

existing literature, it was concluded that unsupervised

learning is slow and less accurate than supervised learning

[1]. The main advantage of unsupervised learning is that it

works for untrained scenarios as well. To overcome this,

feedback from Issue ticket logs along with the analysis was

incorporated in the training set.

 Using this proposed method, the time taken to perform

“First Level Analysis” can be reduced by 95% as compared

to that taken in manual log analysis. This hastens the process

of assigning the issues to the appropriate engineers. The

Turn-Around time of fixing issues is greatly improved,

which makes the “Go-To-Market” process faster. This also

reduces the stress levels amongst engineers performing the

“First Level Analysis” of the issue logs. The engineers can

focus their time and energy on critical issues and other

developmental activities. The Automatic analysis tool has

been built by using concepts of Log pruning, Operating

Windows and the Supervised Learning model which

incorporates feedback from Issue Tickets is able to generate

reliable and fast first level analysis of issues. It is certainly

worth exploring and implementing Automatic Log Analysis

for every major product.

REFERENCES

[1] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2016.
“Experience Report: System Log Analysis for Anomaly Detection”
Proc. International Symposium on Software Reliability Engineering
(ISSRE).

[2] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017.
DeepLog: Anomaly Detection and Diagnosis from System Logs
through Deep Learning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM

[3] Bhaskar N. Patel, Satish G. Prajapati and Dr. Kamaljit I. Lakhtaria
"Efficient Classification of Data Using Decision Tree"

[4] https://pdfs.semanticscholar.org/1fe4/7722d5e65829c7e04b19648f39
b22384d28c.pdf

[5] Leonardo Mariani, Fabrizio Pastore "Automated Identification of
Failure Causes in System Logs"
https://ieeexplore.ieee.org/document/4700316/

[6] Logentries: Log management & analysis software made easy
(https://www.loggly.com/docs/anomaly-detection).

[7] Loggly: Cloud log management service
(https://www.loggly.com/docs/anomaly-detection).

Fig. 4: Decision tree example

https://pdfs.semanticscholar.org/1fe4/7722d5e65829c7e04b19648f39b22384d28c.pdf
https://pdfs.semanticscholar.org/1fe4/7722d5e65829c7e04b19648f39b22384d28c.pdf
https://ieeexplore.ieee.org/document/4700316/
https://www.loggly.com/docs/anomaly-detection

