

Cross-Layer Optimized MBMS Performance for DSDS User Equipment

September 27, 2019

E. Krishna Daamini Samsung Semiconductor India R&D Center[SSIR]

Outline

- Introduction to concerned features
 - Dual SIM Dual Standby [DSDS]
 - Multi-media Broadcast Multicast Service [MBMS]
- Literature Survey
- Problem statement
- Proposed solution with simulation results
- Scope for future work

DSDS

- DSDS UE market share in India is 74%
- RFIC contributes 10% towards UE costing
- Dual SIM devices use common RFIC to save cost
- The RFIC tune-away events are handled by a common resolution entity termed as DSDS scheduler

Fig-1 DSDS Operation

MBMS

- Studies show video traffic to account for 79% of total mobile data traffic by 2022
- Majority of video to be based on broadcast services
- MBMS is a broadcast service used mostly to cater the services like TV channels
- MBSFN is an MBMS technique which uses same frequency resources and are timesynchronized by multiple cells within an MBMS area

Note: Figures in parentheses refer to 2017 and 2022 traffic share. Source: Cisco VNI Mobile, 2019

Fig-2 Mobile data consumption

Fig-3 MBMS setup

Literature Survey

- MBMS
 - Performance optimization of MBMS over MBSFN
- DSDS
 - Network resource optimization in DSDS
 - Improving scheduling operation
- To the best of our knowledge, the above features have not been studied together
- This paper proposes to improve DSDS scheduler operation by taking into account the user experience of MBMS video on one SIM and time-critical operations on other SIM

Problem Statement

- MBMS video stream scheduling is independent of UE request or channel condition or UE type
- MBMS packets will be lost while the RFIC is scheduled for time critical operations in SIM-2 PSS
- This loss of packets leads to poor quality of video reception hampering the user experience

Fig-4 DSDS system setup

Video Quality

- Video Quality Evaluation:
 - To improve user experience
 - To optimize broadcast applications

Subjective VQA metrics		Mean Opinion Score	
Objective VQA metrics	Static	FEC and file repair capability, Bit rate, Service delay constraints	
	Dynamic	Buffer size status, Playout delay	
	Critical	Buffering, Stalling	
	Statistics	Packet loss rate statistics in previous scheduling	

Proposed Solution

- Translate the video quality metrics to design inputs of the DSDS scheduler
- Derive the packet loss thresholds that would be bearable to sustain the desired video quality

$$W = \mu W_{static} - \beta W_{dyna} - \gamma W_{crit} - \delta W_{stat}$$

Adapt the RFIC scheduling operation to maintain KPI's on both SIMs at satisfactory level

Fig-5 Optimized DSDS scheduler

Simulation Results

MBMS Packet Loss Rate on SIM-1 for different DRX cycle lengths on Idle SIM

Enhanced scheme performs comparatively better with lesser Packet Loss Rate (PLR)

Simulation Results

RFIC rejection on Idle SIM as a function of Jitter Buffer thresholds

In order to maintain higher level of watermarks, RFIC rejection for paging stack applied is more

Simulation Results

RFIC rejection on Idle SIM as a function of FEC redundancy for MBMS video stream

With increased FEC redundancy, more PLR can be borne by MBMS stack

Conclusion

- This Paper, to the best of our knowledge, first time provides a cross-layer optimized approach
 merging the "application-domain" quality metrics to the modem level realization of the DSDS RFIC
 scheduler algorithm and enhances the performance
- Simulation results provided exemplify the potential gains achievable

Future Work

Evaluate MBMS video performance with DSDS in mobility scenarios

References

- Yongjin Cho et al, "Video streaming over 3G networks with GOP-based priority scheduling", International Conference on Intelligent Information Hiding and Multimedia Signal Processing (2006)
- Utsaw K., "QoE evaluation for video streaming over eMBMS", International conference on Computing, Networking and Communications (2013)
- 3GPP2, CDMA-2000 evaluation methodology (Revision A 2009)
- Georgios Baltoglou, "IPTV QoS and QoE Measurements in Wired and Wireless networks", Globecom (2012)
- Xingang Liu, "Efficient Video Qaulity Assessment for Broadcasting Multimedia Signal", IEEE
 International Conference on Dependable, Autonomic and Secure Computing (2009)

Thank You

MBMS video streaming traffic model

Information Type	Distribution	Parameters
Inter-arrival time	Deterministic (20 fps)	50 ms
(successive frames)		
# Packets in a	Deterministic	8
frame		
Packet size	Truncated Pareto	K = 160
	(Mean = 400 bytes ,	bytes
	Max= 1000 bytes)	$\alpha = 1.2$
Inter-arrival time	Truncated Pareto	K = 2.5 ms
(packets in a	(Mean = 6 ms, Max=	$\alpha = 1.2$
frame)	12.5 ms)	

